Axial Parallelism
   HOME

TheInfoList



OR:

Axial parallelism (also known as gyroscopic stiffness, inertia or rigidity, or "rigidity in space") is the characteristic of a spinning body in which the direction of the axis of rotation remains fixed as the object moves through space. In astronomy, this characteristic is found in astronomical bodies in orbit. It is the same effect that causes a gyroscope's axis of rotation to remain constant as the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
rotates, allowing the devices to measure Earth's rotation.


Examples


Earth's axial parallelism

The Earth's orbit, with its axis tilted at 23.5 degrees, exhibits approximate axial parallelism, maintaining its direction towards Polaris (the "North Star") year-round. Together with the Earth's
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
, this is one of the primary reasons for the Earth's
season A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's tilted orbit around the Sun. In temperate and ...
s, as illustrated by the diagram to the right. Minor variation in the direction of the axis, known as
axial precession In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In partic ...
, takes place over the course of 26,000 years. As a result, over the next 11,000 years the Earth's axis will move to point towards
Vega Vega is the brightest star in the northern constellation of Lyra. It has the Bayer designation α Lyrae, which is Latinised to Alpha Lyrae and abbreviated Alpha Lyr or α Lyr. This star is relatively close at only from the Sun, a ...
instead of Polaris.


Other astronomical examples

Axial parallelism is widely observed in astronomy. For example, the axial parallelism of the
moon's orbit The Moon orbits Earth in the retrograde and prograde motion, prograde direction and completes one orbital period, revolution relative to the March Equinox, Vernal Equinox and the fixed stars, stars in about 27.32 days (a tropical month and sider ...
al plane is a key factor in the phenomenon of eclipses. The moon's orbital axis precesses a full circle during the 18 year, 10 day
saros cycle The saros () is a period of exactly 223 synodic months, approximately 6585.3211 days, or 18 years, 10, 11, or 12 days (depending on the number of leap years), and 8 hours, that can be used to predict eclipses of the Sun and Moon. One saros period ...
. When the moon's orbital tilt is aligned with the ecliptic tilt, it is 29 degrees from the ecliptic, while when they are anti-aligned (9 years later), the orbital inclination is only 18 degrees. In addition, the
rings of Saturn The rings of Saturn are the most extensive ring system of any planet in the Solar System. They consist of countless small particles, ranging in size from micrometers to meters, that orbit around Saturn. The ring particles are made almost entir ...
remain in a fixed direction as that planet rotates around the sun.


Explanation

Early gyroscopes were used to demonstrate the principle, most notably the
Foucault gyroscope The Foucault gyroscope was a device created by French physicist Léon Foucault in 1852, conceived as a follow-up experiment to his Foucault pendulum in order to further demonstrate the Earth's rotation. It was the prototype of the modern gyrosco ...
. Prior to the invention of the gyroscope, it had been explained by scientists in various ways. Early modern astronomer David Gregory, a contemporary of
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
, wrote:
To explain the Motion of the Celestial Bodies about their proper Axes, given in Position, and the Revolutions of them… If a Body be said to be moved about a given Axe, being in other respects not moved, that Axe is suppos'd to be unmov'd, and every point out of it to describe a Circle, to whose Plane the Axis is perpendicular. And for that reason, if a Body be carried along a line, and at the same time be revolved about a given Axe; the Axe, in all the time of the Body's motion, will continue parallel to it self. Nor is any thing else required to preserve this Parallelism, than that no other Motion besides these two be impressed upon the Body; for if there be no other third Motion in it, its Axe will continue always parallel to the Right-line, to which it was once parallel.
This
gyroscopic effect A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rota ...
is described in modern times as "gyroscopic stiffness" or "rigidity in space". The Newtonian mechanical explanation is known as the
conservation of angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syste ...
.


See also

*
Axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
*
Polar motion Polar motion of the Earth is the motion of the Earth's rotational axis relative to its crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Earth-fixed'' or ECEF reference ...
*
Rotation around a fixed axis Rotation around a fixed axis is a special case of rotational motion. The fixed-axis hypothesis excludes the possibility of an axis changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rot ...
*
True polar wander True polar wander is a solid-body rotation of a planet or moon with respect to its spin axis, causing the geographic locations of the north and south poles to change, or "wander". Unless the body is totally rigid (which the Earth is not) its sta ...


References

{{Reflist Technical factors of astrology Celestial mechanics